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ABSTRACT: A tandem catalytic reaction has been developed as part of a process
to discover tungsten-based olefin metathesis catalysts that have a strong preference
for terminal olefins over cis or trans internal isomers in olefin metathesis. This
tandem isomerization/terminal olefin metathesis reaction (ISOMET) converts Cn
trans internal olefins into C2n−2 cis olefins and ethylene. This reaction is made
possible with Ru-based “alkene zipper” catalysts, which selectively isomerize trans
olefins to an equilibrium mixture of trans and terminal olefins, plus tungsten-based
metathesis catalysts that react relatively selectively with terminal olefins to give Z
homocoupled products. The most effective catalysts are W(NAr)(C3H6)(pyr)-
(OHIPT) (Ar = 2,6-diisopropylphenyl; pyr = pyrrolide; OHIPT = O-2,6-(2,4,6-i-Pr3C6H2)2C6H3) and various [CpRu(P−
N)(MeCN)]X (X− = [B(3,5-(CF3)2C6H3)4]

−, PF6
−, B(C6F5)4

−) isomerization catalysts.
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■ INTRODUCTION

Alkane Metathesis (AM)1 reactions and variations such as the
alkyl group cross-metathesis reaction2 that employ an Ir
dehydrogenation catalyst and a Mo-based or W-based olefin
metathesis catalyst create new hydrocarbons directly from
alkanes via an alkane dehydrogenation/olefin metathesis/olefin
hydrogenation sequence.3 An example is conversion of octane
into a mixture that contains linear alkanes from ethane to
alkanes as large as a C25. AM is a relatively recent example of
what have been called concurrent or orthogonal tandem
catalytic reactions.4 While the total turnovers have been
improved through the development of more thermally robust
tungsten-based metathesis catalysts,5 a significant limitation is
still a lack of selectivity for forming a relatively small selection
of higher molecular weight alkanes. The most selective catalyst
is still Mo(NAr)(CHCMe2Ph)[OC(CF3)2(CH3)]2,

6 although
it is not the most stable under the reaction conditions and the
highest turnovers are not realized with this catalyst.
In an ideal AM reaction, an alkane of chain length Cn is

converted to a C2n‑2 alkane, with ethane as the only byproduct
(Scheme 1, top); secondary metathesis could generate
additional products, e.g., C3n‑3, C4n‑4... but these products
would be minor components at low conversions. Current AM
reactions feature many more products than the C2n‑2, C3n‑3,
C4n‑4... series (Scheme 1, bottom), in part due to the formation
of intermediate internal olefins through dehydrogenation of
alkanes at internal positions, or by rapid isomerization of olefins
(probably largely by Ir) to the thermodynamic mixture of
olefins, a distribution that contains only ∼1% terminal olefin.

Internal olefins undergo cross-metathesis to afford a range of
olefin chain lengths, which upon hydrogenation lead to the
observed mixture of alkanes in current AM reactions of this
type. AM selectivity could be improved by preventing the cross-
metathesis of internal olefins. Therefore, a possible solution
would be to employ a metathesis catalyst that would react only
with the small quantity of terminal Cn olefins present to yield
ethylene and a C2n−2 internal olefin that would then be
rehydrogenated to yield ethane and a C2n−2 alkane. If ethane
were removed at some controlled rate, and if methods were
developed to prevent formation of very long alkanes, then a
relatively small collection of long alkanes could be formed
through homocoupling and cross-coupling of intermediate
terminal olefins.
In order to test the principle of this approach, we turned to

an exploration of a tandem process that would produce a small
amount of terminal olefins through rapid isomerization
reactions in the presence of a metathesis catalyst that is
selective for metathesis of terminal olefins in an equilibrium
mixture of all possible olefins formed through double bond
isomerization. Among the other known tandem reactions of
this general type (Scheme 2) is tandem isomerization/
hydroformylation, an industrially relevant process with
extensive precedent.7 Several other isomerization/terminal
functionalization strategies have been reported in the
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literature,8 and a few are organometallic in nature, such as a Rh-
catalyzed tandem isomerization/hydroformylation/reductive
amination demonstrated by Beller and co-workers9 and a
tandem isomerization/hydroboration reaction reported by
Chirik and Obligacion.10

Sustained efforts in metathesis research have resulted in the
development of highly selective Mo and W catalysts for the
synthesis of Z-olefins.11 Although Z-selective metathesis and
asymmetric metathesis (catalyst stereoselectivity)12 are now
relatively well-known, our understanding of the differences in
reactivity between terminal, cis internal, and trans internal
olefins (catalyst chemoselectivity) remains relatively under-
developed. Catalysts that can provide high levels of Z products
over extended reaction periods must be relatively inactive for
the Z-to-E postmetathesis isomerization of internal olefins;
therefore Z-selective catalysts may exhibit some level of
terminal olefin selectivity.13 Selectivity for terminal olefins is
valuable in the homometathesis of conjugated dienes to form
trienes, where Mo and W monoalkoxide pyrrolide (MAP)
complexes demonstrate high chemoselectivity for terminal
olefins.14 In related work, certain Ru metathesis catalysts can
discriminate between internal and terminal olefins in
unconjugated dienes.15 In general, terminal olefins could be
generated through isomerization of internal olefins and then
immediately and selectively homometathesized in situ.
Isomerization and olefin metathesis have previously been

employed together in tandem reactions, but so far, all examples
differ from the isomerization/terminal functionalization goal
described above; i.e., all olefins, internal and terminal, are
metathesized in situ. In the Shell Higher Olefins Process

(SHOP), olefins that are derived through ethylene oligomeriza-
tion are manipulated through subsequent olefin metathesis.16

Gooβen and co-workers used a Ru metathesis catalyst and a Pd
olefin isomerization catalyst to afford a distribution of olefins
from a single olefin, a process they called “isomerizing self-
metathesis” (Scheme 3A).17 The work reported here builds on

previous incarnations of isomerization/cross-metathesis, where
many different olefin chain lengths are produced from a single
species.18 To our knowledge, there are no previous reports of a
tandem isomerization/metathesis (ISOMET) process where
terminal olefins are selectively metathesized to afford a single
internal olefin (Scheme 3B).
As illustrated in Scheme 3B, an ISOMET reaction can be

envisioned in which a cis internal olefin is formed from a
mixture of trans olefins. This seems possible as a consequence
of the development of Mo or W olefin metathesis catalysts that

Scheme 1. Desired (Top) and Complete (Bottom) Pathways Operating in the Alkane Metathesis (AM) Reaction

Scheme 2. Tandem Isomerization/Functionalization
Reactions

Scheme 3. Previous Isomerizing Self-Metatheses versus
Selective Isomerization/Metathesis (ISOMET)
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are Z-selective and “alkene zipper” Ru complexes19 that are
effective for selective (trans to trans) positional isomerization of
trans olefins over cis positional or geometrical isomers (Figure
1).18c Trans-selective Ru olefin isomerization catalysts should

not react with cis olefins that are formed through Z-selective
homocoupling of terminal olefins. Finally, the isomerization
and metathesis catalysts obviously must be mutually compatible
and carry out their selective functions in the presence of one
another. The amount of terminal olefin in an equilibrium
mixture can be estimated using a calculated product
distribution derived from standard enthalpies of formation.20

For a mixture of 1-hexene, trans-2-hexene, and trans-3-hexene,
approximately 1% of the total distribution is 1-hexene at 298 K
(Table 1). Clearly a metathesis catalyst is required that has a
dramatic preference (preferably >1000) for metathesis
homocoupling of the terminal olefin in the presence of internal
olefins.
This report discusses the ISOMET strategy for exploring

metathesis chemoselectivity and demonstrates the catalytic
utility of this tandem process for the generation of higher Z-
olefins from mixtures of trans internal olefins.

■ RESULTS AND DISCUSSION

Development of the ISOMET Method. The primary
objective is to measure cis selectivity and terminal selectivity in
an ISOMET reaction. Trans-3-hexene was chosen as the
internal olefin because it is relatively inexpensive compared to
other pure trans olefins; ethylene and cis-5-decene would be
formed from trans-3-hexene in the ISOMET reaction.
In an early stage of our investigation of metathesis

chemoselectivity, W(NAr)(C3H6)(pyr)(OHIPT) (OHIPT =
O-2,6-(2,4,6-i-Pr3C6H2)2C6H3) and Mo(NAr)(CHCMe2Ph)-
[OC(CF3)2CH3]2 were each treated with various ratios of 1-
octene and trans-2-octene (Table 2). W(NAr)(C3H6)(pyr)-
(OHIPT) has previously been shown to react selectively with
terminal olefins over internal olefins in the room temperature
homocoupling of dienes14 and also exhibits chain length
selectivity in the alkyl group cross-metathesis reaction.2

W(NAr)(C3H6)(pyr)(OHIPT) was almost completely un-
reactive toward internal olefins at a 50:1 ratio of internal olefin
to terminal olefin. Mo(NAr)(CHCMe2Ph)[OC(CF3)2CH3]2
was far less selective. Therefore, W(NAr)(C3H6)(pyr)-

(OHIPT) was chosen as the first generation catalyst for the
ISOMET reaction.
Trials were performed first in open vials at room temper-

ature, or in closed systems (e.g., J. Young NMR tubes); these
reactions gave little product. In order to remove ethylene
continuously, argon gas was passed slowly through the
headspace of a refluxing solution that contained the two
required catalysts. Dichloromethane was added to limit the
temperature for the ISOMET reaction to 40 °C and to dissolve
[CpRu(P−N)(MeCN)]BArF4.
We first investigated various loadings of W(NAr)(C3H6)-

(pyr)(OHIPT) and [CpRu(P−N)(MeCN)]BArF4 (Scheme 4;
Table 3). The cis selectivity was estimated by dividing the cis-5-
decene fraction by the total decene (C10) fractions; all olefins
were quantified through GC experiments. The C7−C10 olefins
were the major products, so chain length selectivity was
calculated from the ratio of C10 products versus the sum of the
C7−C10 products. Reducing the [CpRu(P−N)(MeCN)]BArF4
loading from 0.10 mol % to 0.05 mol % did not reduce the
amount of C10 product; loadings lower than 0.05 mol % were
not attempted. An increase in tungsten catalyst loading
increased the C10 product and slightly decreased the chain
length selectivity.
The major C9 product produced in ISOMET is most likely

cis-4-nonene, which can be formed through the cross-
metathesis of 1-hexene and trans-2-hexene. While the
homocoupling of 1-hexene is highly Z-selective, 1-hexene/
trans-2-hexene cross-metathesis is much less Z-selective. This
result can be rationalized by considering the possible
approaches of trans-2-hexene to an n-pentylidene complex
(Scheme 5). Both approaches would lead to a tungstacyclobu-
tane whose substituents point toward the bulky apical OHIPT
ligand, so there is less of an energy difference between the two
approaches than would be expected in a homometathesis of
terminal olefins, where Z-selectivity is high. Increasing the bulk

Figure 1. An “alkene zipper” Ru isomerization catalyst.

Table 1. Calculated Product Distribution of Hexene Isomers at 298 Ka

isomer ΔHf° ΔΔHf° Bf D Bf × D calcd (%) found (%)b

1-hexene −17.29 2.6 0.0123 2 0.0248 0.93 0.96
t-2-hexene −19.89 0 1 2 2 74.9 74.1
t-3-hexene −19.63 0.26 0.645 1 0.645 24.1 25.0

aAdapted from the approach of Morrill et al.20 for the equilibrium distribution of heptenes. Definitions: ΔHf = standard enthalpies of formation of
isomeric hexenes in kcal/mol;25 Bf = Boltzmann factor = exp(−ΔΔHf/RT); D = degeneracy. bProduct distribution employing [CpRu(P−
N)(MeCN)]BArF4.

Table 2. Competition Experiment between 1-Octene and
trans-2-Octene Using
Mo(NAr)(CHCMe2Ph)[OC(CF3)2CH3]2 and
W(NAr)(C3H6)(pyr)(OHIPT)

a

catalyst
ratio of trans-2-
octene/1-octene

1-octene
consumed

trans-2-octene
consumed

Mo(NAr)(CHCMe2Ph)
(OC(CF3)2CH3)2

10:1 50% 48%

Mo(NAr)(CHCMe2Ph)
(OC(CF3)2CH3)2

50:1 >99% 58%

W(NAr)(C3H6)(pyr)
(OHIPT)

10:1 60%

W(NAr)(C3H6)(pyr)
(OHIPT)

50:1 50% 2%

a1-Octene and trans-2-octene, C6D6, W(NAr)(C3H6)(pyr)(OHIPT)
(2.5 mg, 2.6 μmol) or Mo(NAr)(CHCMe2Ph)[OC(CF3)2CH3]2 (2.5
mg, 3.3 μmol), RT, closed vial.
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of the phenoxide ligand even further might be a way to increase
the selectivity for terminal olefins, but the consequence would
likely be a decrease in the overall rate of reaction.
If the ISOMET reaction is performed at room temperature

rather than at 40 °C, the conversion is much lower (0.018
mmol cis-5-decene at 22 °C vs 0.250 mmol at 40 °C). While a
loss of ethylene undoubtedly is crucial for efficient olefin
metathesis, the ratio of hexene products observed in the room
temperature reaction is far from equilibrium, a finding
consistent with ethylene inhibition. Attempts to perform
ISOMET under a dynamic vacuum at room temperature
were unsuccessful; substrate was lost readily. An attempt to
carry out the reaction at 0 °C yielded no product.
While cis selectivity and chain length selectivity are similar

from run to run, the conversion varies considerably from one
trial to another. Several explanations are possible. Isomerization
and metathesis can proceed prior to heating the reaction, and
the amount of time that elapses from preparation of the
reaction to heating may range from 5 to 10 min per reaction as
the reactor is moved from the glovebox to a heat source.
Because some dichloromethane will evaporate during the
reaction, the rate of change in solution concentration and the
rate of ethylene loss may differ from run to run.

Various W complexes were investigated in the ISOMET
reaction (Table 4). The TON per W and TON per Ru are
calculated with respect to the cis-5-decene formed in an ideal
ISOMET reaction, rather than with respect to the sum of all
products. There is a strong correlation between cis selectivity
and chain length selectivity for the catalysts investigated here.
W(NAr)(C3H6)(pyr)(OHIPT), the most Z-selective catalyst,
also has the highest chain length selectivity. The least Z-
selective catalyst, W(O)(CHCMe2Ph)(OHMT)2, yields a wide
distribution of olefin chain lengths and has a poor chain length
selectivity; however, this catalyst provides the highest amount
of total product (1500 mmol versus 580 mmol for W(NAr)-
(C3H6)(pyr)(OHIPT)).
Limitations in ISOMET conversions prompted us to screen

variants of the Ru catalyst that contain other weakly
coordinating counteranions. Using our optimized conditions,
the counteranion seems to have a negligible effect on
conversion or selectivity (Table 5). While the BArF4 variant
was used for much of this study, the (commercially available)
PF6 catalyst also appears to work well, as long as enough
dichloromethane is present in the reaction mixture to keep the
catalyst in solution.

Scheme 4. ISOMET Reaction of trans-3-Hexene

Table 3. Effect of Catalyst Loading on the ISOMET Reaction of trans-3-Hexenea

W loading Ru loading cis-5-decene (mmol) C10 (mmol) % cisb % chain length selectivityc W TONd Ru TONd

0.16 mol % 0.1 mol % 0.247 ± 0.056e 0.263 ± 0.062 94 ± 1% 64% 48 ± 11 95 ± 21
0.16 mol % 0.05 mol % 0.342 0.368 93% 64% 67 263
0.32 mol % 0.05 mol % 0.459 0.496 93% 59% 45 353

a[CpRu(P−N)(MeCN)]BArF4, W(NAr)(C3H6)(pyr)(OHIPT), 350 mg trans-3-hexene, CH2Cl2, reflux, 6h.
bMeasured as the ratio of cis-5-decene

versus the total C10 product formed. cMeasured as the ratio of C10 product versus the total C7, C8, C9, and C10 product formed. dCalculated with
respect to cis-5-decene. eAverage of three runs.

Scheme 5. Reaction of an n-Pentylidene with trans-2-Hexene
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Preliminary experiments suggested that Mo(NAr)-
(CHCMe2Ph)[OC(CF3)2CH3]2 was a poor candidate for
ISOMET reactions (vide supra). In contrast to other metathesis
catalysts, Mo(NAr)(CHCMe2Ph)[OC(CF3)2CH3]2 could be
employed in a closed vessel for ISOMET of trans-3-hexene; a
wide distribution of olefins was observed when this Mo catalyst
was paired with [CpRu(P−N)(MeCN)]BArF4 (see Figure S5
in the Supporting Information). The distribution of olefins
qualitatively matches that observed in the reaction of the
terminal olefin with a Mo olefin complex at high temperatures

(where olefins are both isomerized and metathesized)21 and
approaches the product distribution observed in alkane
metathesis. When Mo(NAr)(CHCMe2Ph)[OC(CF3)2CH3]2
is used under conditions typically employed in an ISOMET
reaction (refluxing dichloromethane under a continuous argon
flow), an insoluble precipitate forms that we propose to be high
molecular weight internal olefins; the precipitate was not
characterized further. Light olefin products of olefin metathesis
(<C6) are volatile enough to escape the apparatus, leaving
heavier fragments in the vessel; several rounds of isomer-
ization/metathesis would eventually produce longer, insoluble
products.

Cross-Metathesis Reactions. A cross-metathesis ISOMET
reaction was attempted in which styrene and trans-3-hexene
were both added to the reaction mixture. Curiously, styrene
completely inhibits any ISOMET reaction (Scheme 6). Styrene
did not inhibit the isomerization of 1-hexene by [CpRu(P−
N)(MeCN)]BArF4, so the inhibition of ISOMET in the
presence of styrene is apparently a metathesis related problem.
In a separate competition experiment (Scheme 7), styrene (10

equiv), 1-octene (1 equiv), and trans-2-octene (1 equiv) were
added to a C6D6 solution of W(NAr)(C3H6)(pyr)(OHIPT) at
room temperature (Scheme 3). Within 24 h, isomers of 7-
tetradecene and oct-1-en-1-yl-benzene could be observed by
GC-MS; no 6-dodecene or hept-1-en-1-yl-benzene was formed.
W(NAr)(C3H6)(pyr)(OHIPT) reacts more readily with
terminal olefins than internal olefins at room temperature,
and under these conditions both cross-metathesis and
homocoupling appear to be selective for terminal olefins. The
reason why styrene inhibits ISOMET is still unclear.
Additional reactions were performed to see if other olefins

inhibit ISOMET. In a mixture that contains trans-3-hexene and
cis-2-heptene (4.16 mmol:0.845 mmol), 0.05 mol % [CpRu(P−
N)(MeCN)]BArF4, and 0.16 mol % W(NAr)(C3H6)(pyr)-
(OHIPT), 0.431 mmol cis-5-decene was formed. On the basis
of the amount of cis-2-heptene recovered from the reaction,
0.209 mmol cis-5-decene was formed through ISOMET. The
remainder of the cis-5-decene was produced through homo-
metathesis of cis-2-heptene, which suggests that this “terminal-
olefin-selective” metathesis catalyst is also reactive toward cis
internal olefins; its slow reaction with trans internal olefins is

Table 4. Effect of W Metathesis Catalyst on Conversion and
Selectivitya

W cate

cis-5-
decene
(mmol)

C10
(mmol) % cisb

% chain
length

selectivityc
W

TONd
Ru

TONd

W(NAr)(C3H6)
(pyr)
(OHIPT)

0.342 0.368 93% 64% 67 263

W(NAr′)
(C3H6)(pyr)
(OHIPT)

0.209 0.229 91% 57% 41 161

W(NAr)(CH-t-
Bu)(Me2Pyr)
(OHMT)

0.231 0.312 74% 34% 45 177

W(O)
(CHCMe2Ph)
(OHMT)2

0.043 0.281 15% 19% 8 33

a[CpRu(P−N)(MeCN)]BArF4 (0.05 mol %), W cat (0.16 mol %),
350 mg trans-3-hexene, CH2Cl2, reflux, 6h

bMeasured as the ratio of
cis-5-decene versus the total C10 product formed. cMeasured as the
ratio of C10 product versus the total C7, C8, C9, and C10 product
formed. dCalculated with respect to cis-5-decene. eAr′ = 2,6-
dimethylphenyl; OHMT = O-2,6-(2,4,6-Me3C6H2)2C6H3.

Table 5. Effect of Ru Isomerization Catalyst on Conversion
and Selectivitya

Ru cat

cis-5-
decene
(mmol)

C10
(mmol) % cisb

% chain
length

selectivityc
W

TONd
Ru

TONd

[CpRu(P−N)
(MeCN)]
BArF4

0.342 0.368 93% 64% 67 263

[CpRu(P−N)
(MeCN)]
PF6

0.277 0.291 95% 75% 54 212

[CpRu(P−N)
(MeCN)]
B(C6F5)4

0.398 0.438 91% 67% 78 306

aRu (0.05 mol %), W(NAr)(C3H6)(pyr)(OHIPT) (0.16 mol %), 350
mg trans-3-hexene, CH2Cl2, reflux, 6h.

bMeasured as the ratio of cis-5-
decene versus the total C10 product formed. cMeasured as the ratio of
C10 product versus the total C7, C8, C9, and C10 product formed.
dCalculated with respect to cis-5-decene.

Scheme 6. Attempted Cross-Metathesis of Styrene and trans-3-Hexene

Scheme 7. Competition Experiment between an Internal and
a Terminal Olefin in Cross-Metathesis
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what makes it valuable for ISOMET of trans-3-hexene.
Remarkably, only trace amounts of C8 and C9 were formed,
perhaps because the added cis olefin substrate increases the
concentration of reactive (cis and terminal) olefins to compete
with trans isomers.
A cross-metathesis ISOMET between cis-4-decene and trans-

3-hexene was also attempted. A mixture of 0.371 mmol C10
(94% cis-5-decene) and 0.617 mmol C9 (91% cis-4-nonene)
were formed, thus demonstrating that a cross-metathesis of cis-
4-decene and 1-hexene is competitive with 1-hexene homo-
coupling during the ISOMET reaction.
Factors That Affect Overall Conversion. The ISOMET

reaction does not proceed beyond 6 h; extending the reaction
time to 24 h yielded essentially the same results as were
observed after 6 h. The solution darkens after 6 h, suggesting
that one of the catalysts decomposes or both catalysts
decompose.
In a control experiment, [CpRu(P−N)(MeCN)]BArF4 was

found to isomerize 1-hexene readily under ISOMET conditions
without any sign of decomposition over a period of 6 h; the
reaction color did not change, and upon adding additional 1-
hexene, the catalyst continued to isomerize olefins to
equilibrium mixtures. Thus, [CpRu(P−N)(MeCN)]BArF4 did
not decompose in the absence of the metathesis catalyst. Every
ISOMET reaction that was performed at 40 °C yielded hexene
isomer ratios that are approximately what would be expected at
equilibrium, which suggests that [CpRu(P−N)(MeCN)]BArF4
remains active throughout the ISOMET reaction. Although
excessive CH2Cl2 evaporation could lead to precipitation of
[CpRu(P−N)(MeCN)]BArF4, runs using larger amounts of
CH2Cl2 did not lead to higher levels of product. Also, addition
of more CH2Cl2 to the apparatus after 24 h did not result in
additional conversion.
Decomposition of the metathesis catalyst could also cause

ISOMET to stop. W(NAr)(C3H6)(pyr)(OHIPT) is active for
several days during alkane metathesis at 150 °C, and we
therefore expected that this catalyst would not readily
decompose during the ISOMET reaction (refluxing CH2Cl2
at 40 °C). However, the concentration of olefin under AM
conditions is very low at the steady state compared to ISOMET
conditions, so a high olefin concentration may may be
responsible for a shorter catalyst life in some circumstances.
Homometathesis of 1-hexene was previously reported with
W(NAr)(C3H6)(pyr)(OHIPT) at 4 mol % loading, achieving
35% conversion in 3 days at room temperature and 58%
conversion in 24 h at 60 °C.22 These reactions were performed
in sealed J. Young NMR tubes. A homocoupling reaction of 1-
hexene employing W(NAr)(C3H6)(pyr)(OHIPT) under the
same conditions as ISOMET (refluxing CH2Cl2, 24 h, argon
flow) gave approximately 40% conversion. This TON (174) is
more than the turnover number obtained during ISOMET with
W(NAr)(C3H6)(pyr)(OHIPT) (TON 60−80). The difference
in TON between a homocoupling and an ISOMET reaction
may be ascribable to the difference in concentration of terminal
olefin in these two reactions.
While W(NAr)(C3H6)(pyr)(OHIPT) decomposition seems

to be a likely limitation in an ISOMET reaction, the addition of
more W(NAr)(C3H6)(pyr)(OHIPT) and CH2Cl2 after 24 h
did not lead to an increase in conversion (0.230 mmol total cis-
5-decene). [CpRu(P−N)(MeCN)]BArF4 may also decompose
under ISOMET conditions, but at this stage decomposition of
W(NAr)(C3H6)(pyr)(OHIPT) appears to be faster under the
conditions employed. The equilibrium mixture of remaining

hexenes obtained at the end of ISOMET reactions supports this
hypothesis.

■ CONCLUSIONS

ISOMET has been demonstrated for the preparation of Z-
internal olefins from a mixture of trans olefin isomers. We have
demonstrated that certain metathesis catalysts can discriminate
terminal from internal olefins, and that Z-selectivity and chain
length selectivity of a given catalyst in ISOMET reactions are
related qualitatively. Chain length selectivity in ISOMET
appears to be higher than in AM reactions. The factors that
limit conversion in ISOMET reactions are not understood, but
decomposition of the metathesis catalyst in the presence of the
Ru catalyst is the lead suspect. A more robust metathesis
catalyst and catalysts that can function in a tandem reaction at
room temperature would be highly desirable and should boost
selectivity and catalyst longevity.

■ EXPERIMENTAL SECTION

All manipulations were conducted under a nitrogen or argon
atmosphere in a Vacuum Atmospheres drybox or using Schlenk
techniques, unless otherwise specified. All glassware was oven-
dried prior to use. Ether, pentane, toluene, and benzene were
degassed with nitrogen and passed through activated alumina
columns under nitrogen. All dried and deoxygenated solvents
were stored over molecular sieves in a nitrogen or argon-filled
glovebox. NMR spectra were recorded on 300, 500, or 600
MHz spectrometers at room temperature. Chemical shifts for
1H spectra were referenced to the residual resonances of the
deuterated solvent and are reported as parts per million relative
to tetramethylsilane. W(NAr)(C3H6)(pyr)(OHIPT),

11e W-
(NAr′)(C3H6)(pyr)(OHIPT),

22 W(NAr)(CH-t-Bu)(Me2Pyr)-
(OHMT),2 and W(O)(CHCMe2Ph)(OHMT)2

23 were pre-
pared using literature procedures.

Representative ISOMET Procedure. Under a nitrogen
atmosphere, [CpRu(P−N)(MeCN)]BArF4 (3.4 mg, 2.6 umol),
W(NAr)(C3H6)(pyr)(OHIPT) (5.0 mg, 5.2 umol), trans-3-
hexene (350 mg), CH2Cl2 (∼100 uL), mesitylene, and a stir bar
were added to a 25 mL glass vessel equipped with reflux
condenser and two Teflon valves. The reactor was filled with
argon and a slow flow rate maintained as the reaction was
heated in an oil bath until the dichloromethane vigorously
refluxed. After 6 h, the reaction mixture was passed through
basic alumina, and the resulting solution was subjected to GC-
FID analysis (Agilent CP-Sil PONA CB, 50 m, 0.21 mm; He
carrier gas; 35 °C isothermal, 240 min; 100:1 split; crude
samples diluted with C5H12 25:1). The peaks were integrated
with respect to the mesitylene internal standard. GC response
factors were calculated with C6−C10 olefin standards.

Synthesis of 1-Nonene. A suspension of methyltriphenyl
phosphonium bromide in THF was prepared in a Schlenk flask.
The flask was cooled to 0 °C, and n-BuLi (2.5 M in hexanes)
was added dropwise. The resulting red-orange suspension was
cooled to −78 °C, and after 15 min, octanal (used as received)
was added dropwise. The reaction was allowed to warm to
ambient temperature. After 16 h, water and pentane were
added, and the organic layer was washed with water and dried
over MgSO4. Reduction of the solvent volume, followed by
passage through a silica plug (pentane eluent) and evaporation
of volatile components, afforded the product. The spectrum of
the product matched literature values.24
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Olefin Cross-Metathesis Competition Experiment.
Styrene (16.5 mg, 0.159 mmol), 1-octene (3.6 mg, 0.032
mmol), and trans-2-octene (3.6 mg, 0.032 mmol) were added
to a C6D6 solution of W(NAr)(C3H6)(pyr)(OHIPT) (2.5 mg,
2.6 μmol) at room temperature. The reaction was run in a small
uncapped vial within a larger, capped 20 mL scintillation vial,
which provided additional headspace for any ethylene that was
generated. After 24 h, isomers of 7-tetradecane and oct-1-en-1-
yl-benzene can be observed by GC-MS.
Olefin Homometathesis Competition Experiment. A

mixture of 1-octene and trans-2-octene was added to a C6D6
solution containing W(NAr)(C3H6)(pyr)(OHIPT) (2.5 mg,
2.6 μmol) or Mo(NAr)(CHCMe2Ph)[OC(CF3)2CH3]2 (2.5
mg, 3.3 μmol) at room temperature. The reaction was run in a
small uncapped vial within a larger, capped 20 mL scintillation
vial, which provided additional headspace for any generated
ethylene. The reactions were stopped after 2 h and analyzed by
1H NMR.
Ru-Catalyzed Olefin Isomerization. Under a nitrogen

atmosphere, [CpRu(P−N)(MeCN)]BArF4 (3.4 mg, 2.6 μmol),
1-hexene (350 mg), CH2Cl2 (∼100 μL), mesitylene, and a stir
bar were added to a 25 mL glass vessel equipped with reflux
condenser and two Teflon valves. The reactor was placed under
an Ar atmosphere and heated in an oil bath until the
dichloromethane refluxed vigorously. The reaction was stopped
after 6 h, and an aliquot was taken and analyzed by 1H NMR.
An additional 350 mg of 1-hexene was added and the reactor
was heated for another 19 h. An aliquot of the final reaction
mixture confirmed that 1-hexene had been isomerized to an
equilibrium mixture of 1-hexene, trans-2-hexene, and trans-3-
hexene. These values matched theoretical values obtained from
a calculation that employed standard enthalpies of formation.
Styrene/Hexene ISOMET Procedure. Under a nitrogen

atmosphere, [CpRu(P−N)(MeCN)]BArF4 (1.7 mg, 1.3 μmol),
W(NAr)(C3H6)(pyr)(OHIPT) (5.0 mg, 5.2 umol), trans-3-
hexene (250 mg), styrene (100 mg), CH2Cl2 (∼100 uL),
mesitylene, and a stir bar were added to a 25 mL glass vessel
equipped with reflux condenser and two Teflon valves. The
reactor was placed under an Ar atmosphere and heated in an oil
bath such that the solution refluxed vigorously. After 6 h, the
reaction mixture was passed through basic alumina, and the
resulting solution was subjected to GC analysis. No cross
products or new olefin lengths were observed.
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